Innovation in Prosthodontics:
A History of Articulators, Dentures, and Occlusion

Dr. Edgar N. Starcke, Dr. Robert L. Engelmeier, and Dr. Rodney Phoenix
Table of Contents

Forward by Dr. Thomas Taylor .. 6
Preface by Dr. Robert L. Engelmeier ... 7

Part One: A History of Articulators

Early Years

1. A Perspective on the Early Years, Part I. .. 11
2. A Perspective on the Early Years, Part II. .. 14

Mandibular Movement

3. Early Attempts to Reproduce Mandibular Movement, Part I. .. 19
4. Early Attempts to Reproduce Mandibular Movement, Part II. ... 25
5. Early Attempts to Reproduce Mandibular Movement, Part III, Searching for the Solution to a Puzzle. .. 28

Facebows & Incisal-Pin and Guide

6. The Appearance and Early History of Facebows. .. 35

Unusual Concepts and Early Designs

9. Unusual Concepts or “It seemed to Be a Great Idea at the Time.” ... 59
10. From Facebows to the Gnathograph, a Brief History of Early Devices Developed for Recording Condylar Movement, Part I. .. 70
11. From Facebows to the Gnathograph, a Brief History of Early Devices Developed for Recording Condylar Movement, Part II.. 78

Geometric Theories

12. A Critical History of Articulators Based on Geometric Theories of Mandibular Movement, Part I. ... 89
13. A Critical History of Articulators Based on Geometric Theories of Mandibular Movement, Part II: Rupert Hall’s Conical Theory. .. 102
15. A Critical History of Articulators Based on Geometric Theories of Mandibular Movement, Part IV: Needles, Wadsworth, and a Look at Some Who Followed ... 130
Scribing Articulators
17. “Scribing” Articulators: Those with Functionally Generated Custom Guide Controls, Part II. ... 154

Denture Occlusal Grinders
20. The Wonderful World of “Grinders,” Part II. ... 191
21. The Wonderful World of “Grinders,” Part III. ... 212

Conflicting Theories
22. Henry L “Harry” Page and the Transograph. ... 227
23. “The Articulator Wars” Phenomenon with Some Circumstances Leading Up to It. ... 234
24. The Contributions of Rudolph L. Hanau and His Company, Part I. ... 247
25. The Contributions of Rudolph L. Hanau and His Company, Part II. ... 257

Part Two: A History of Dentures
Dental Surveyors
26. The History and Development of the Dental Surveyor: Part I. ... 267
27. The History and Development of the Dental Surveyor: Part II. ... 275
28. The History and Development of the Dental Surveyor: Part III. ... 284

Posterior Denture Teeth
29. The History and Development of Posterior Denture Teeth- Introduction. Part I... 293
30 The History and Development of Posterior Denture Teeth- Introduction, Part II
Artificial Tooth Development in America Through the Nineteenth Century... 301
31. The History and Development of Posterior Denture Teeth- Introduction, Part III
Early Designs for Occlusal Anatomy of Posterior Denture Teeth. ... 315
Part Three: A History of Occlusion

Pioneers of Anatomic Denture Occlusion

32. The Contributions of Alfred Gysi ...323
33. The Anatomic School of Complete Denture Occlusion................................331

Non-anatomic Denture Occlusion

34. The Development of Non-anatomic Denture Occlusion, Part I.........................337
35. The Development of Non-anatomic Denture Occlusion, Part II..........................343
36. The Development of Non-anatomic Denture Occlusion, Part III..........................354
37. The Development of Non-anatomic Denture Occlusion, Part IV..........................364

Occlusal Concepts and Materials to Control Forces

38. The Development of Lingualized Occlusion. ..378
39. Denture Teeth with Metal Occlusals, Part I...392
40. Denture Teeth with Metal Occlusals, Part II...400
41. The Functionally Generated Path Concept..407

Part Four: Appendix & Epilogue

42. Appendix: Twentieth Century Timeline of the Major Artificial Tooth Manufacturers........415
43. Epilogue ..423

Bibliography..427
after examining some of the complex and occasionally elaborate designs for what were essentially simple hinge articulators, it becomes obvious that there were other reasons for these changes. At this point, it is well worth mentioning an interesting phenomenon that affected the design of mechanical articulators almost from the beginning. The planeline articulator (Fig 5) and the Moffitt (Fig 8) represent devices with lower members designed to imitate the condyle, coronoid process, and ramus of the mandible. James House noted that some inventors must have believed that simulating the features of the mandible "was supposed to have some 'magical' influence to articulator function."6 Through the years, this approach has been common, but the most bizarre example has to be the contrivance by an unknown inventor shown in Fig 10. Although its exact function is unclear, it no doubt represented a strange interpretation of mechanical equivalency.

Part One: A History of Articulators
Early Years

ARTICULATORS.

INVENTED BY W. H. SMITH, NEWPORT, R. I.

This article is made of brass, and possesses the advantage over those in general favor by those who have used it. Price $1.00.

SAMUEL S. WHITE

This is an S. S. White ad for an articulator manufactured to W. H. Smith. This articulator likely...
The History of Articulators: A Perspective on the Early Years, Part I

Edgar N. Starcke, DDS

HOW MUCH do we really know about the origins of articulators? Before the 1840s, a time that coincided with the development of dentistry as a profession in the United States, Europe was our principal source of dental knowledge and practices. Investigating the infancy of American dentistry is itself a challenge. Anecdotal information, inadequate historical records, and little early scientific research have obscured much of what we know. It is not surprising that there are very few references to articulators in the early literature; however, since 1900, the distinction of “inventing the articulator” has been given to two prominent European dentists of the 18th and 19th centuries, Phillip Pfaff and Jean Baptiste Gariot.

In 1756, Phillip Pfaff, dentist to the court of Frederick the Great, King of Prussia, first described his method of making plaster casts. He described a way of making impressions with sealing wax, one half of the mouth at a time, removing the sections individually, and reassembling them outside of the mouth. He then poured plaster into the impression. If natural teeth were present, Pfaff had the patient bite into the wax so that the relationship of the teeth could be considered. For this reason, it has been assumed that he used a device to preserve the relationship of the casts. Some scholars therefore believe that he was the first to use a dental articulator. Even though this would seem logical, it can only be considered conjecture, because Pfaff never mentioned such a device.

In 1805, Jean Baptiste Gariot described his method of making plaster casts and extending them posteriorly to provide an indexing mechanism for preserving the relationship of the casts.

Gariot was indeed the first to describe a “plaster articulator” (see sidebar). It was a simple plaster indexing procedure, which came to be known as the “oiled board” articulator (Fig 1). “Plaster articulators” were popular well into the 20th century, and through the years, many designs have been reported in the literature. An early variation on the Gariot design was called the “slab” articulator (Fig 2).

Authors who described and used “plaster articulators” were Richardson, 1860, Coles, 1876, Peezo, 1916, and Essig, 1937. It is also noteworthy that three U.S. patents for “plaster articulators” were granted between 1857 and 1888:

- A. A. Blandy of Baltimore, MD. Patent #16,708, March, 1857

*Based on their function, “plaster articulators” would be appropriately classified as Class I articulators or as Cast Relators. The Glossary of Prosthodontic Terms (7th edition) defines a Class I articulator as “a simple holding instrument capable of accepting a single static registration.” A Cast Relator is defined as a “mechanical device that orients opposing casts to each other without reference to anatomic landmarks.”

The concern is not how a “plaster articulator” is classified, but whether it should be described as an articulator at all. The use of the terms “instrument” and “mechanical device” in the above definitions clearly indicates that there is a distinction between appliances designed specifically for mounting opposing casts and casts that are mounted by extending the plaster bases posteriorly for indexing.

I am not suggesting that the term “plaster articulator” be avoided or discarded, because it is familiar and is widely understood for what it represents. However, it should be recognized that “plaster articulator” is a misnomer, because it actually refers to a procedure or method for mounting casts with a plaster index, and not to an instrument, appliance, or a device, terms that are more descriptive of mechanical articulators.
Other Gothic Arch Incisal Guide Control Articulators

The Gysi Trubyte was not the only articulator with a gothic arch incisal guiding system available to US dentists in 1928.

In 1921, John W. Needles produced an articulator with this type of incisal guide as the primary control (Fig 6). Needles developed a hybrid design that incorporated elements of Monson’s “single rotation center” idea as well as the controlling incisal guide assembly. In addition, between 1922 and 1927, Needles and Milus M. House developed the House-Needles incisal guidance system for dental articulators (Fig 7).

In 1922, Milus M. House was appointed director of the Deane Institute for Dental Research in Kansas City, MO, described as the first foundation specifically devoted to dental research. He held that position for 5 years. John Needles was on the original 15-member research team and worked closely with House on several projects. One such project produced a new mandibular movement registration procedure now known as the “House-Needles Chew-in.”

Figure 1. (A) The Gysi Trubyte Articulator, 1928. (Reprinted with permission from Dentsply, p 44.) (B) The Gysi Trubyte Articulator, 1928. Schematic drawing illustrating the influence of the Rumple [sic] incisal guide on the position of the lateral rotation centers. (Reprinted with permission, p 881.)

Figure 2. The Gysi Trubyte Articulator, 1928. The incisal guide assembly is also known as the “Rumpel guide.” It is a controlling mechanism and Gysi’s first adjustable incisal guide. (Reprinted with permission from Dentsply, p 61.)

Figure 3. A composite drawing by Gysi of Breuer’s illustrations showing the most logical position of the vertical "rotation point" to be at (R). (Reprinted from Gysi, p 66.)
Unusual Concepts & Early Designs

Early Articulators Designed for Arbitrarily Correcting the Bite

Before a basic understanding of the nature of mandibular movement and before the advent of improved materials and techniques, dentists were plagued by the inherent problems associated with the necessity of using liberal amounts of a soft crude wax to make impressions and, at the same time, record the bite. Commonly known as a “mush bite,” making a correct centric relation record with this procedure was usually just plain luck. Some early inventors, concerned with the extent of this problem, however, must have believed that the most practical solution would be found not by improving clinical techniques but by using an articulator with special adjustment capabilities. As a result, these inventors turned their attention to modifying the designs of commonly used simple hinge articulators with a variety of features that could be used as part of laboratory procedure to correct the bite or a missed centric on the instrument.

US patent records show that these improvements appeared on the first articulator granted a US patent. In 1840, James Cameron of Philadelphia, PA produced his unique “pole stand” design (Fig 11). This articulator had features that allowed both the upper and lower members to be arbitrarily adjusted. Sixty-four years later, in 1904, Frank L.
Part Two: A History of Dentures
The many chemicals that he tested and used in his trade. In time, Duchaêteau observed that the surfaces of his porcelain mortars were impervious to staining by the many chemicals to which they were exposed. He therefore postulated that teeth made from porcelain might also resist staining (if only he could make them). His initial attempt to fabricate a porcelain denture was a collaboration with the Guerhard Porcelain Factory in Paris. This first attempt was a total failure, however. Realizing that he lacked the necessary knowledge of firing porcelain and the skills of a mechanical dentist, Duchaêteau sought the help of several artists and, eventually, the Parisian dentist Nicholas Dubois de Chemant (Fig 4A). Together, Duchaêteau and de Chemant experimented with various clays, earth pigments, and firing techniques. By 1774, they succeeded in creating a serviceable denture for Duchaêteau. At that point, Duchaêteau enthusiastically embarked on a short-lived career making porcelain dentures for others. Lacking the necessary knowledge, skill, and experience of a mechanical dentist, he unfortunately was forced to retire to his apothecary business because of his very dissatisfied customers. In 1776, Duchaêteau presented his technique to the Royal Academy of Surgeons in Paris, who recognized and thanked him for his efforts and contribution. De Chemant, on the other hand, continued to experiment and refine his porcelain technique. He was able to get his supplies from the Sevres China Factory, which actually built a small firing oven for him. By 1788, de Chemant had reached a point where he enjoyed significant success with what he did.

Posterior Denture Teeth

Figure 3. (A) Pierre Fauchard was the innovative French dentist credited as the first to develop complete dentures that could be effectively retained. His classic work was written in 1723 but not published until 1728. (B) This illustration of a complete denture comes from Fauchard’s landmark textbook. The denture features teeth carved from hippopotamus ivory and has flat steel retention springs. Walrus and hippopotamus ivory were the most popular ivories used for artificial teeth. Like any other organic material, however, ivory was prone to blacken and decay in the oral environment, which led to a horrific odor and taste. The steel springs, as expected, were prone to rust. Many of the first dental mechanics who fabricated such dentures were originally ivory carvers and jewelers.
The History and Development of Posterior Denture Teeth—Introduction, Part I

Robert L. Engelmeier, DMD, MS

The purpose of this series of articles is to lead the reader on an intriguing journey through the historic events that led to the development and evolution of artificial teeth. The artistry and innovative genius that have been invested in this endeavor have weaved an interesting story. As this story unfolds, these articles concentrate specifically on the history of commercially available, posterior denture teeth and the philosophies of occlusion that promoted their use. The reason for this focus is that it was only after the commercial availability of individual artificial teeth and the discovery of a reliable denture base material that prosthetic dentistry could truly progress and be available to more than just a privileged few.

No attempt is made in these articles to take sides in the passionate debates that have raged over the past century between the different philosophical schools of denture occlusion. These articles simply attempt to present the evolution of the various occlusal philosophies along with the sometimes curious denture teeth that they inspired. And, where appropriate, they profile the inventive individuals who developed those teeth along with the companies that manufactured them. In addition, an attempt is made to present these historical profiles in the context of their period (i.e.) the level of technology, materials development, and advancement in articulator design.

Before the early twentieth century, the occlusal anatomy of posterior denture teeth was an arbitrary creation (whether “anatomic” or “nonanatomic”). It was not designed to follow any occlusal philosophy or theory of mandibular movement. These posterior denture teeth could not be set in harmony (or to balance) with any particular determinants of occlusion. This introductory paper is an historical review of the pioneering period of denture and artificial tooth development through the early nineteenth century.

Ornamental Replacement of Missing Teeth

There is archaeological evidence from many cultures of attempts to replace missing teeth. Early replacements were fashioned from whatever materials were available (e.g.) bone, ivory, wood, pebbles, or human and animal teeth. The substitutes were ligated or splinted to adjacent natural teeth. Because this series of articles is concerned with complete denture occlusion, this journey begins with the earliest known attempts to restore a complete arch with artificial replacements for the teeth.

The earliest examples of complete dentures used in the Far East come from early sixteenth-century Japan. These unique restorations were carved from a solid piece of a sweet-smelling wood, such as apricot, cherry, or boxwood. Remarkably, these primitive dentures were actually retained by atmospheric pressure. To date, some 120 of these dentures have been found. Many of these restorations had integral teeth carved from the same block of wood as the base. Some had teeth fashioned from ivory or bone, whereas others had human teeth attached. There are even examples with copper and iron nails driven into the posterior base to enhance chewing efficiency (Fig 1). Wooden dentures of this type were made in Japan from around 1500 until the mid-nineteenth century.

The hinged ox-bone complete dentures illustrated in Figure 2 A were excavated in Switzerland and date from around 1500. Restorations of this type were ornamental only and were never intended for mastication. They usually dropped out of the mouth if the wearer spoke too rapidly. The German medical historian Gernot Rath postulated that if sets of maxillary and mandibular complete dentures were ever made by the Romans, they most...
likely would have resembled those shown in Figure 2. After the collapse of the Roman Empire, dental skill and knowledge rapidly deteriorated as Europe sank into the Dark Ages. The dentures exhibited in Figure 2 could actually represent the reemergence of a much earlier “lost” design.

Early Milestones in Denture Tooth Development

In his epochal text,⁹ the celebrated French dentist Pierre Fauchard (Fig 3A) described what is generally considered the first example of effectively retained maxillary and mandibular complete dentures. His innovative dentures (Fig 3B) consisted of carved bone or ivory teeth (or human natural teeth) attached to an enameled metal base. Flat steel springs were attached to both dentures, as illustrated, to adequately retain them.

Early eighteenth-century Europe experienced a high point in Western civilization and culture. Although quacks, frauds, and charlatans still abounded, dentistry was at last emerging as a recognized profession. Despite of the fact that this period was a time of scientific discovery, the fledgling profession of dentistry was woefully lacking good instruments and reliable materials; there were no articulators. It was not until 1756 that Phillip Pfaff of Berlin first described a wax sectional impression technique to generate plaster casts of a patient’s mouth.⁹,¹⁰ Before the development of the dental cast, denture bases had to be crudely shaped or roughed out to approximate the anatomy of a patient’s ridges. This was accomplished by careful measurement of the mouth with dividers and compasses. Final shaping was done by means of painstaking fitting to the mouth with a colored disclosing medium and meticulous, precision carving of the base material. This was a time when competent clinicians kept their knowledge secret. Consequently, good training was rare. Finally, it was a time when only the wealthy could afford state-of-the-art dental treatment. The French ari-

Figure 1. (A and B) A typical example of a Japanese wooden denture from the early sixteenth century. The base was carved from a single piece of wood, and the anterior teeth were fashioned from flint. Iron or copper nails were commonly driven into the posterior bases to enhance chewing efficiency. Examples of these dentures exist where the teeth and sometimes the base have been painted black to indicate that the wearer was a married woman. (C) An all-wooden Japanese denture, circa 1700.
after examining some of the complex and occasionally elaborate designs for what were essentially simple hinge articulators, it becomes obvious that there were other reasons for these changes. At this point, it is well worth mentioning an interesting phenomenon that affected the design of mechanical articulators almost from the beginning. The planeline articulator (Fig 5) and the Moffitt (Fig 8) represent devices with lower members designed to imitate the condyle, coronoid process, and ramus of the mandible. James House noted that some inventors must have believed that simulating the features of the mandible “was supposed to have some ‘magical’ influence to articulator function.”6 Through the years, this approach has been common, but the most bizarre example has to be the contrivance by an unknown inventor shown in Fig 10. Although its exact function is unclear, it no doubt represented a strange interpretation of mechanical equivalency.

Part Three: A History of Occlusion

Un Statim + un apprenti + 5 minutes = un modèle parfait
Denture Teeth with Metal Occlusals–Part 1
Robert L. Engelmeier, BS, DMD, MS, FACP
Department of Prosthodontics, University of Pittsburgh School of Dental Medicine

Keywords
Denture tooth designs; denture tooth history; metal occlusals; non-anatomic denture occlusion.

Abstract
Non-anatomic denture teeth made their debut in the early 1920s. Within a decade, the paradigm shift from anatomic to non-anatomic denture occlusion had been well established. The next evolutionary step in non-anatomic denture tooth development emerged with Dr. Wharton’s 1938 design for his metal “chewers.” The intention of denture teeth with metal occlusal inserts was increased chewing efficiency and wear resistance. Illustrated here in Part 1 are some of the most interesting metal occlusal designs from the early to mid-20th century. Though most were never manufactured or only had short production runs, a few enjoyed significant popularity and are still in production.

Victor H. Sears believed control of occlusal forces, for the purpose of alveolar ridge preservation, to be the primary objective of non-anatomic denture occlusion. He considered chewing efficiency to be a secondary consideration. Nevertheless, chewing efficiency has had a huge impact on non-anatomic tooth designs for nearly a century.

One very interesting chapter in the story of artificial tooth development has been the integration of metal inserts into occlusal surfaces to increase chewing efficiency and resist wear. Metal occlusals for non-anatomic denture teeth made their debut in the late 1930s. A surprising number of these fascinating designs have appeared over the past 80 years. A few have survived to the present day, while most have faded into oblivion. A search of the dental literature and U.S. Patent Database has revealed more than 30 non-anatomic tooth designs having metal incorporated into their occlusal anatomy. The most significant of those designs are reviewed in this 2-part article.

Early metal occlusal designs
The earliest example of a metal occlusal intended to increase chewing efficiency was Dr. Charles Wharton’s 1938 design for his metal Chewers. They had corrugated metal ridges bisected by a single, central ridge and a narrowed occlusal table. The primary design objectives were efficient cutting, unrestricted gliding in all directions, and ready escape of masticated food via a space created under them in the denture base. The all-metal Chewers were exclusively set in the mandibular arch and were meant to occlude against maxillary flat, porcelain teeth (Fig 1). The Chewers were produced and marketed by Austenal Laboratories.

Dr. John T. Vincent developed maxillary posterior denture teeth containing stainless steel or gold inserts, which were set against mandibular, porcelain French’s Posterior Teeth. Though he never published any articles concerning his design, Dr. Vincent did explain his purpose and use of his Metal Inserts very well in a personal communication with Victor Sears. In that conversation he claimed to have been first to develop an occlusion from such a combination of materials. He was also the first to appreciate the fact that thin, metal ridges efficiently cut through the bolus but did not chip easily like porcelain ridges. Vincent’s teeth were not flat. They possessed enough buccal and lingual rise to be set to balance. The metal inserts were eliminated from the maxillary second molars to allow the mandibular porcelain molars to quickly “chew-in” their maxillary acrylic counterparts. This enabled them to balance with the incisal guidance during eccentric movements. Excessive wear and loss of occlusal vertical dimension (OVD) was prevented by the metal inserts occluding against the remaining mandibular porcelain teeth. Dr. Vincent’s theory was that this

Figure 1: Dr. Charles Wharton’s 1938 design for his metal Chewers was intended to increase masticatory efficiency. These apparently were the first non-anatomic, metal occlusal denture teeth. They were produced by Austenal Laboratories.
minimized trauma to the ridges and aided in reestablishing the original horizontal and vertical overlap during reline/rebase procedures. One final benefit of this combination of materials was the minimizing of occlusal sounds. Vincent developed his Metal Inserts in 1942. He apparently produced them for his exclusive use and never marketed them. According to his communications with Sears, he used these teeth in his private practice for more than a decade (Fig 2A, B).3,4

Dr. Charles H. Prange of Short Hills, NJ, patented a very effective metal insert for acrylic denture teeth in 1942. He sought to take advantage of the ability of acrylic teeth to produce lighter, stronger dentures, while the metal inserts improved bolus penetration and resisted abrasion. To avoid esthetic and weight disadvantages often associated with metal occlusals, he designed ribbon-like, chrome-cobalt inserts for his artificial teeth. These teeth efficiently cut through the bolus, resisted abrasion, and were easy to fabricate, set, and adjust (Fig 3).5 They displayed very little metal and had excellent sluice-ways. This versatile design could be used in individual teeth or over a quadrant block of teeth. To further enhance the sluice-ways, the ribbons could be interrupted rather than closed as illustrated. No evidence was found indicating Dr. Prange’s teeth were ever marketed as designed, but his patent was assigned to the Dental Research Corporation of Chicago. Eventually, Howmedica, Inc. (a division of Dental Laboratory Products, Inc.) manufactured and marketed Dr. Irving R. Hardy’s Cutter Bar Teeth under Dr. Prange’s 1942 patent.

The 1940s were very dynamic and fruitful developmental years for denture teeth with metal inserts. Many unpatented prototypes were produced by clinicians for exclusive use in their private practices. In addition, considerable collaboration seems to have gone on between many of those pioneer designers.

One of the more prolific designers of that period was Dr. C. H. Blanchard of Los Angeles, whose Cross Bladed Porcelain Teeth were profiled in a previous article. He believed that dentulous patients shredded food by 3 actions: shearing by incisors, punching holes with sharp cusps, and slicing by cusps through sulci (in harmony with mandibular movement). He held that all of these actions could also be accomplished by edentulous individuals. His artificial tooth designs were not flat. His teeth had minimal cusp height and were set on a compensating curve to allow for balanced occlusion (Fig 4A).4 Dr. Blanchard advocated materials that allowed wear to compensate for shifts in the denture bases following ridge resorption. He preferred 18-8 stainless steel, hard gold solders, and clasp alloys over the much harder chrome-cobalt and bronze alloys. In 1941, he suggested a stainless steel blade design (Fig 4B)4 to Dr. John T. Vincent, who by 1942 had developed his own block posteriors containing metal blades. By 1943, Blanchard modified his maxillary bladed teeth by fabricating them from acrylic and imbedding metal cutting blades. He continued to oppose these teeth with his original mandibular Porcelain Cross Bladed Teeth. Dr. Blanchard experimented with many designs for metal inserts as well as modifications of commercially available teeth as: Dr. French’s Posteriors and Austenal’s ‘O’ mold (Fig 4C).4 He insisted it was essential for blades to occlude with opposing blades throughout all mandibular excursions.4 In his 1951 article, he credited Dr. Frank Melton Butler of Seattle for having fabricated a large number of dentures containing metal blades by 1946. He also mentioned Dr. Prange’s patent5 and Dr. Irving Hardy’s Cutter Bar design of 1947.4 However, all of Dr. Blanchard’s designs and those of

Dr. Charles H. Prange of Short Hills, NJ, patented a very effective metal insert for acrylic denture teeth in 1942.
his collaborators seem to have been prototypes. No mention could be found concerning manufacturing or marketing of any of these teeth.

Dr. George A. Weichert of St. Albans, NY, was granted a patent in 1945 for his Cutting Cusp for Dentures metal occlusal design. He claimed that these teeth could cut all types of food with equal effectiveness at a 50% reduction in applied force. These teeth were designed to be set in the mandibular denture opposite slightly concave maxillary posterior teeth. The Cutting Cusp occlusals were convex mesiodistally and could effectively be set in a balanced lingualized or linear occlusion, though those 2 concepts had not been clearly defined as early as 1945. Dr. Weichert preferred hard metal, like the chrome cobalt alloys for his blades. His design had excellent sluice-ways. One-third of his patent was assigned to Emmerson P. Jennings of New York City; however, no record of commercial availability of these teeth has been found (Fig 5A).
1951: M.M. DeVan’s Bio-Teeth were offered in porcelain. The entire Dentsply Artificial Tooth line was available in vacuum-fired porcelain and their new Duetron acrylic resin.

1953: Ernest L. Pilkington and Joseph F. Turner’s 30° Pilkington-Turner Teeth were made available in vacuum-fired porcelain. Sears considered these teeth to be non-anatomic due to their geometric appearance. They were offered in Biotone plastic in 1955, as were all other Dentsply molds.

1954: 0° Rational Teeth were introduced in porcelain. They were offered in Biotone acrylic in 1956. These teeth were dropped from Dentsply’s line in the mid 1980s when they were replaced by Monoline Teeth, which were clearly a revision of the original Rational Tooth design.

1958: 10° Functional Teeth were offered in vacuum-fired porcelain, as were the 33° Trubyte Teeth. Functional Teeth were dropped from Dentsply’s line in the mid 1980s when they were replaced by the new 10° Anatoline Teeth (Fig 2).

1962: 33° Trubyte Teeth were offered in Biotone blended acrylic. 10° Functional Teeth were added to the Biotone line in 1965.

1966: Quadrant blocks of 0° Rational Teeth were offered in Biotone blended acrylic.

1971: 20° Bioform plastic teeth underwent an occlusal design modification.

1978: Dentsply offered 33° Trubyte and 0° Rational Teeth in their new economic New Hue plastic.

1981: Dentsply offered their Solarlex line in a new economic porcelain. They also offered their 20° posters in their latest “IPN” (interpenetrating polymer network) cross-linked polymer.

1982: 10° Anatoline (Fig 3) and 0° Monoline Teeth were redesigned 10° Functional and 0° Rational Teeth, respectively. They were marketed in the new IPN cross-linked polymer. 33° Trubyte teeth in 1985 and 30° Pilkington-Turner Teeth in 1989 were also offered in IPN acrylic.

1989: Dentsply introduced the new 22° Biostabil line of semi-anatomic teeth in IPN cross-linked polymer (Fig 4).

1992 Dentsply offered their “SLM” line of cross-linked polymer teeth (sustained life material). The line included 33° Trubyte, 30° Pilkington-Turner, 22° Biostabil, 20° Posteros, 10° Anatoline, and 0° Monoline teeth.

1995: Portrait IPN cross-linked acrylic was introduced in the 20° Posterior and 10° Anatoline molds.

1996: The Portrait IPN line was expanded to include the 33° Trubyte Teeth and a revised carving of the 20° Posteros.

1998: The Portrait line was further expanded to include 0° Monoline Teeth and the totally new 40° Euroline Teeth (Fig 5).

1981: Dentsply offered their Solarlex line in a new economic porcelain. They also offered their 20° posters in their latest “IPN” (interpenetrating polymer network) cross-linked polymer.

1982: 10° Anatoline (Fig 3) and 0° Monoline Teeth were redesigned 10° Functional and 0° Rational Teeth, respectively. They were marketed in the new IPN cross-linked polymer. 33° Trubyte teeth in 1985 and 30° Pilkington-Turner Teeth in 1989 were also offered in IPN acrylic.

1989: Dentsply introduced the new 22° Biostabil line of semi-anatomic teeth in IPN cross-linked polymer (Fig 4).

1992 Dentsply offered their “SLM” line of cross-linked polymer teeth (sustained life material). The line included 33° Trubyte, 30° Pilkington-Turner, 22° Biostabil, 20° Posteros, 10° Anatoline, and 0° Monoline teeth.

1995: Portrait IPN cross-linked acrylic was introduced in the 20° Posterior and 10° Anatoline molds.

1996: The Portrait IPN line was expanded to include the 33° Trubyte Teeth and a revised carving of the 20° Posteros.

1998: The Portrait line was further expanded to include 0° Monoline Teeth and the totally new 40° Euroline Teeth (Fig 5).
Early 21st century Dentsply mold guides included: 0° Portrait Posteriors, 0° Monoline Posteriors, 10° Anatoline Posteriors, 20° Posteriors, 22° Biostabil, 30° Pilkington-Turner, 33° Posteriors, and finally 40° Euroline Posteriors. All came in 3 distinct lines with their own distinct shade guides: Bioblend IPN, Bioform IPN, and Portrait IPN. Though Dentsply did not develop molds specifically for a lingualized occlusion, they made a number of recommendations mixing molds of their maxillary and mandibular teeth to create a “lingualized occlusion.” These recommendations were discussed in the Lingualized Occlusion chapter of this series. By 2005 they carded 2 combinations of portrait teeth specifically labeled “Lingualized Occlusion.” One was 10° Anatoline Maxillary Teeth versus 0° Monoline Mandibular Teeth. The other was their 33° Maxillary Posteriors versus 22° Biostabil Mandibular Teeth. Currently Dentsply/Sirona offers the following lines of posterior denture teeth in short, medium and long arch lengths:

<table>
<thead>
<tr>
<th>Portrait IPN:</th>
<th>0°, 10°, 20°, 22°, 33°, 40°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioform IPN:</td>
<td>0°, 10°, 20°, 30°, 33°</td>
</tr>
<tr>
<td>TruExpression Veriform:</td>
<td>0°, 10°, 20°, 33°, 40°</td>
</tr>
<tr>
<td>Two lines of Ultra Value teeth:</td>
<td>Classic synthetic resin and New Hue Economy: 0°, 33°</td>
</tr>
</tbody>
</table>

Myerson Tooth Corporation

1917: The Ideal Tooth Corporation was founded in Boston by Dr. Simon Myerson. It was soon thereafter moved to Cambridge, MA. Dr. Myerson’s first products were improved porcelain artificial teeth and facings. The original posterior tooth line was anatomic in form.

1929: Dr. Myerson designed the first truly flat nonanatomic denture teeth. His “True Kusp” teeth were available in porcelain and, for many years the benchmark for flat nonanatomic teeth.

1936: True Kusp teeth were manufactured in England by the Dental Manufacturing Company.

1937: The Ideal Tooth Corporation developed the first multi-fired porcelain for denture teeth. They offered their entire line in the new True-Blend porcelain.

1947: The Ideal Tooth Corporation name was changed to the Myerson Tooth Corporation.

1948: The Myerson Tooth Corporation developed the first cross-linked copolymer material for denture tooth fabrication. They offered their entire tooth line in both the new Dura-Blend resin as well as their True-Blend porcelain. Also during the 1940s, Myerson introduced their new FLX (free lateral excursion) semi-anatomic molds.

1951: “True Kusp” teeth were redesigned as “Shear-Kusp” teeth and were offered in both True-Blend porcelain and Dura-Blend resin.

1952: Dr. Myerson worked with Dr. Victor Sears to design the Myerson-Sears flat nonanatomic teeth, which were available in both Dura-Blend resin and True-Blend multi-fired porcelain.

1955: Dura-Blend characterized teeth were introduced. Myerson also improved their multi-fired porcelain technique for enhanced esthetics.

1960: The Myerson Tooth Corporation acquired the Kenson Tooth Corporation. The Kenson Tooth line was offered in a new “balanced” cross-linked polymer. This line contributed 4 additional molds to Myerson’s artificial tooth inventory: 0° (distinctly different from the Myerson-Sears design. These 0° teeth were also available as a quadrant block.), F-10 posteriors (a 10° semi-anatomic mold), 20° posteriors, and 30° (anatomic) posteriors (Fig 6).

1970s: Myerson offered their very esthetic “Special Teeth” in a natural fluorescence porcelain.

Figure 6: Myerson’s 30° anatomic teeth were available in porcelain and acrylic. They added 4 new molds to their line in 1960 when they purchased the Kenson line. One of these was an additional anatomic mold. Myerson redesigned their anatomic mold in the early 1990s (courtesy Dr. Robert Engelmeier’s collection).